Optomechanical Cooling in a Continuous System
نویسندگان
چکیده
منابع مشابه
Optomechanical cooling with generalized interferometers.
The fields in multiple-pass interferometers, such as the Fabry-Pérot cavity, exhibit great sensitivity not only to the presence but also to the motion of any scattering object within the optical path. We consider the general case of an interferometer comprising an arbitrary configuration of generic beam splitters and calculate the velocity-dependent radiation field and the light force exerted o...
متن کاملQuantum theory of optomechanical cooling
We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 10, and they may soon go to the ground state of mechanical motio...
متن کاملWeak Force Measurement in Bistable Optomechanical System
One of the main milestones in the study of opto-mechanical system is to increase the sensitivity of weak forces measurement up to the standard quantum limit. We have studied the detection of weak force under a bistable condition in red detuned regime. In this case, dynamics of the system behaves asymptotically similar to stationary state and applying external force affects phase and fluctuation...
متن کاملCooling and squeezing via quadratic optomechanical coupling
We explore the physics of optomechanical systems in which an optical cavity mode is coupled parametrically to the square of the position of a mechanical oscillator. We derive an effective master equation describing two-phonon cooling of the mechanical oscillator. We show that for high temperatures and weak coupling, the steady-state phonon number distribution is nonthermal (Gaussian) and that e...
متن کاملDecoherence suppression by cavity optomechanical cooling
Article history: Available online 28 March 2012
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review X
سال: 2018
ISSN: 2160-3308
DOI: 10.1103/physrevx.8.041034